Modeling the assessment of the effectiveness of the regional innovation system in Russia

The article examined the technical effectiveness of innovation in the region. Technical efficiency is understood as the ability to generate a result based on certain resources. That is, the economic system is considered inefficient if it is unable to generate a maximally achievable result on the basis of a certain set of resources. As an economic unit, the regions of the Russian Federation were considered. Further, a quantitative assessment of the technical efficiency of the regions was carried out, which is one of the most important aspects of the region’s innovation activity. In this study, a nonparametric method of econometric modeling was used — Data Envelopment Analysis (DEA). The simulation results showed a mismatch between the two existing ratings. Appropriate conclusions were drawn

Keywords: Data Envelopment Analysis, efficiency evaluation, regional innovation system, regional economy, econometric modeling

References

1. С. П. Земцов, В. Л. Бабурин. Как оценить эффективность региональных инновационных систем в России?//Инновации. № 2. 2017. С. 60-65.

2. Т. Ю. Кудрявцева. Инновационный кластер приборостроения в Санкт-Петербурге: миф или реальность?//Инновации. № 12. 2016. С. 95-103.

3. Д. Г. Родионов, О. В. Заборовская. Влияние научно-технического прогресса на развитие сферы услуг в современной экономике//Инновации. № 7. 2003. С. 9.

4. Д. Г. Родионов, И. А. Рудская. Зарубежный опыт использования форсайт-проектов в стратегическом развитии регионов//Глобальный научный потенциал. 2016. № 9 (66). С. 93-100.

5. И. А. Рудская. Индекс инновационного развития как метод измерения потенциала и эффективности функционирования региональных инновационных систем Под ред. А. В. Бабкина. В сб.: «Реструктуризация экономики России и промышленная политика»//Труды научно-практической конференции с зарубежным участием. 2015. С. 142-151.

6. Рейтинг инновационных регионов России для целей мониторинга и управления. 2015. http://www.i-regions.org/files/file_103.pdf.

7. A. Bonaccorsi, C. Daraio (2004). Econometric Approaches to the Analysis of Productivity of R&D Systems: Production Functions and Production Frontiers/In: H. F. Moed et al. (eds.). Handbook of Quantitative Science and Technology Research. Dordrecht: Kluwer Academic Publishers. P. 51-74.

8. A. Charnes, W. Cooper, E. Rhodes (1979). Measuring the efficiency of decision-making units//European Journal Of Operational Research, 3(4), 429-444.

9. K. Chen, J. Guan (2012). Measuring the Efficiency of China’s Regional Innovation Systems: Application of Network Data Envelopment Analysis (DEA)//Regional Studies, vol. 46, no. 3. P. 355-377.

10. W. W. Cooper, L. M. Seiford, K. Tone (2006). Introduction to Data Envelopment Analysis and Its Uses. With DEA-Solver Software and References. New York: Springer.

11. N. J. Coell, D. S. P. Rao, C. J. O’Donell, G. E. Battese. An Introduction to Efficiency and Productivity Analysis. 2nd edition. Springer Science + Business Media, Inc. 2005. – 327 p.

12. C. Edquist (ed.) (1997). Systems of Innovation: Technologies, Institutions and Organisations. Pinter Publisher, London.

13. M. Kotsemir (2013). Measuring National Innovation Systems Efficiency — a Review of DEA Approach//HSE Basic Research Programme Working Papers. Series: Science, Technology and Innovation. WP BRP 16/STI/2013.

14. M. J. Farrell (1957). The measurement of productive efficiency//Journal of the Royal Statistic Society, 120. P. 253-282.

15. M. Fritsch, V. Slavchev (2006). Measuring the Efficiency of Regional Innovation Systems: An Empirical Assessment. Freiberg Working Papers.

16. Рейтинг инновационного развития субъектов Российской Федерации. https://issek.hse.ru/data/2016/06/28/1115847925/RIR%202016.pdf.

Authors