Analysis of scientific and patent landscapes in the field of modern technologies for deep grain processing

In the global economy, the formation and development of markets for products of deep processing of wheat are taking place. Processing technologies allow companies to produce commodities with high added-value and to raise non-raw export gain. The paper proposes a methodology for revealing these technologies with patent and research landscape analysis. The methodology is based on joint using of several searches and analytical tools such as IAS Priorities, Lexis Nexis and Scopus. As a result, we detected the research fields in which Russia has an impressive background. We also identified competence centres, which develop prospective technologies of deep wheat processing. Besides, the paper presents conclusions about promising areas of research (lysine, feed additives, threonine, tryptophan and methionine), with which there are opportunities to expand the export and domestic potential of the wheat market

Keywords: patent landscape, semantic search, competence centers, export potential, wheat grain processing technologies.

References

  1. P. Oldham, S. Hall, G. Burton. Synthetic biology: Mapping the scientific landscape//PLoS One. Vol. 7. № 4. 2012. P. e34368. https://www.ncbi.nlm.nih.gov/pubmed/22539946.
  2. A. N. Petrov, A. V. Sartory, A. V. Filimonov. Comprehensive assessment of the status scientific and technical projects using Technology Project Readiness Level//Economy of Science. 2016. Vol. 2 (4). (Rus.)
  3. D. Devyatkin, E. Nechaeva, R. Suvorov, I. Tikhomirov. Mapping the Research Landscape of Agricultural Sciences//Foresight and STI Governance. Vol. 12. № 1. 2018. P. 69-78.
  4. О .А Yeremchenko. Technological barriers to the development of the grain industry in Russia//Economy of Science. 2017. Vol. 3 (2). (Rus.)
  5. I. Zibareva, N. Soloshenko. Tematicheskaya struktura rossiiskogo segmenta nauchnykh zhurnalov v global’nykh i natsional’nykh informatsionnykh resursakh [Thematic structure of the Russian segment of scientific journals in global and national information resources]//Materialy Tret’ei mezhdunarodnoi konferentsii NEIKON ‘Elektronnye nauchnye i obrazovatel’nye resursy: Sozdanie, prodvizhenie i ispol’zovanie’ [Proceedings of the Third International Conference NEICON ‘Electronic scientific and educational resources: Creation, promotion and use’], Moscow: NEICON, 2015. P. 255-259. (Rus.)
  6. D. А. Usanov, N. V. Romanova, Е. А. Saldina. Prospects and trends in the development of terahertz technologies: patent landscape//Economy of Science. 2017. Vol. 3 (3). (Rus.)
  7. S. V. Kortov, D. B. Shulgin, D. E. Tolmachev, A. D. Yegarmina. Technology Trends Analysis Using Patent Landscaping//Economy of Region. 2017. Vol. 13 (3). P. 935-947. (Rus.)
  8. S. L. Parfenova, E. G. Grishakina, D. V. Zolotarev, V. V. Bogatov. Publication landscape of the Russian Science//Science. Innovations. Education. 2017. Vol 23 (1). P. 53-79. (Rus.)
  9. E. Christofilopoulos, S. Mantzanakis. China-2025: Research and innovation landscape//Foresight. 2016. Vol. 10 (3). (Eng.)
  10. R. Suvorov, D. Devyatkin, N. Usenko, Ju. Otmakhova. Review of Methods for Data-Driven Export Potential Analysis//Proceeding of the Institute for Systems Analysis of the Russian Academy of Science. 2017. Vol. 67 (3). P. 75-85. (Rus.)
  11. D. A. Devyatkin, R. E. Suvorov, I. A. Tikhomirov. A Method for the Identification of Competence Centers Based on the Example of the Artificial Intelligence Domain//Scientific and Technical Information Processing. 2017. Vol. 44. № 4. P. 253-260.
  12. N. G. Kurakova, L. A. Tsvetkova, V. G. Zinov. Russian patent landscape, created by the residents of the country: analysis of the identified issues//Economy of Science . 2016. Vol. 1 (1). (Rus.)
  13. D. G. Frisio, V. Ventura. Exploring the Patent Landscape of RNAi-based Innovation for Plant Breeding//Recent patents on biotechnology. 2019. Vol. 13. № 3. P. 207-216.
  14. A. W. K. Yeung, N. T. Tzvetkov, O. S. El-Tawil et al. Antioxidants: scientific literature landscape analysis//Oxidative medicine and cellular longevity. 2019. Vol. 2019.
  15. I. A. Tikhomirov, N. V. Toganova, M. I. Ananyeva. Tools for analysis of scientific and technological capacities of Russia//Proceeding of the Institute for Systems Analysis of the Russian Academy of Science. 2016. Vol. 66 (3). P. 98-104. (Rus.)
  16. N. Popov. Drafting and analysis of patent landscapes//Patents and licenses. Intellectual rights. 2016. Vol. 12. P. 39-46. (Rus.)
  17. H. Schьtze, C. D. Manning, P. Raghavan. Introduction to information retrieval. Vol. 39. Cambridge University Press, 2008.
  18. A. Streletskiy, V. Zabavnikov, E. Aslanov, D. Kotlov. Patent landscape for nanotechnology//Foresight and STI Governance. 2015. № 9 (3).
  19. A. V. Andreichikov, O. N. Andreichikova. Patent landscape of satellite navigation//Cloud of science. 2016. Vol. 3 (3). (Rus.)
  20. A. Shvets, D. Devyatkin, I. Sochenkov et al. Detection of current research directions based on full-text clustering /2015 Science and Information Conference (SAI). IEEE, 2015. P. 483-488.
  21. R. E. Suvorov, I. V. Sochenkov. Establishing the similarity of scientific and technical documents based on thematic significance//Scientific and Technical Information Processing. Vol. 42. 2015. P. 321-327.
  22. S. S. Volkov, D. Devyatkin, I. Sochenkov et al. Towards Automated Identification of Technological Trajectories//Russian Conference on Artificial Intelligence. Springer, Cham, 2019. P. 143-153.
  23. https://www.trademap.org/Country_SelProduct.aspx?nvpm=1%7c%7c%7c%7c%7c1001%7c%7c%7c4%7c1%7c1%7c2%7c1%7c1%7c2%7c1%7c1.
  24. http://priorities.isa.ru

 

Authors