Regional innovation assessment toolkit: cluster analysis

The article completes a series of works on the creation of tools for comparative assessment of innovation activity in the regions of Russia. This work is based on statistical methods of cluster analysis. The purpose of the article is a comparative assessment of the level of innovative development of the regions of the Volga Federal District using the tools of cluster analysis. The paper examines 14 regions that are part of the Volga Federal District. As a system of indicators, a set of indicators from the previous work of this cycle is adopted. The conducted research demonstrates the universality of the cluster analysis tools in the tasks of assessing the innovation activity of regions. The proposed tool can be used in the process of classifying regions according to various indicators of innovative development. The results of clustering can help in the development of strategic planning documents for innovation activities to strengthen the scientific and technological development of the subjects of the Federation. Using the proposed tool it is possible to analyze similarity of these objects, to give a comparative evaluation of innovative development of regions in the country, and to determine the place and role of each region in the national innovation system. The statistical regularities of innovative functioning revealed in the article can serve as a basis for forecasting the dynamics of the development of innovative systems in the regions. The methods of cluster analysis proposed in the article can be used to analyze other regions and federal districts of the Russian Federation

Keywords: region, innovation, cluster, cluster analysis, hierarchical clustering methods, k-nearest neighbors method, k-means method, indicators of state assessment

References

  1. L. I. Nivorozhkina, S. V. Arzhenovskij. Mnogomernye statisticheskie metody v ekonomike: uchebnik. M.: Rior, 2017. 52 s.
  2. A. M. Dubrov, V. S. Mhitaryan, L. I. Troshin. Mnogomernye statisticheskie metody i osnovy ekonometriki. M.: MESI, 2002. 79 s.
  3. S. N. Mityakov, E. S. Mityakov, O. I. Mityakova, G. N. Yakovleva. Instrumentariy otsenki innovatsionnoy deyatel'nosti v regionakh: indeksnyy metod//Innovatsii. 2020. № 12.S. 53-62.
  4. O. N. Lomidze. Klasternyj analiz v sociologicheskih issledovaniyah//Uchenye zapiski Rossijskogo gosudarstvennogo social'nogo universiteta. 2011. № 9 (97). Ch. 1. S. 38-42.
  5. V. V. ZHoludeva, N. F. Mel'nichenko, G. E. Kozlov. Primenenie klasternogo analiza dlya ocenki social'no-ekonomicheskogo razvitiya regionov na primere CFO i YAroslavskojoblasti//Ekonomika, statistika i informatika. 2014. № 1. S. 144-148.
  6. T. D. Degtyareva, E. A. Chulkova, E. S. Torbina. Issledovanie differenciacii social'nogo razvitiya sel'skih territorij//Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta. 2015. № 5. S. 212-216.
  7. A. A. Modenova, I. M. Yakimov. Klasternyj analiz regionov Rossii po nauchnoj i innovacionnoj aktivnosti//Nauchnye issledovaniya: ot teorii k praktike. 2015. T. 2. № 2 (3). S. 69-72.
  8. A. D. Shmatko, S. V. Gubin. Klasternyj analiz innovacionnogo po-tenciala sub»ektov RF//Upravlencheskoe konsul'tirovanie. 2020. № 3. S. 61-72.
  9. Yu. A. Dmitriev, D.Yu. Frajmovich, Z.V. Mishchenko. Klasternyj analiz innovacionnoj deyatel'nosti v regionah central'nogo federal'nogo okruga//Vestnik Instituta ekonomiki Rossijskoj akademii nauk. 2013. № 3. S. 79-87.
  10. S. A. Ajvazyan, V. M. Buhshtaber, I. S. Enyukov, L. D. Meshalkin. Prikladnaya statistika: Klassifikaciya i snizhenie razmernosti. M.: Finansy i statistika, 1989. 450 s.
  11. V. K. Senchagov, S. N. Mityakov. Ispol'zovanie indeksnogo metoda dlya ocenki urovnya ekonomicheskoj bezopasnosti//Vestnik Akademii ekonomicheskoj bezopasnosti MVD Rossii. 2011. № 5. S. 41-50.

Authors