Innovative companies’ investment activity factors

The study is devoted to the innovative companies’ investment activity factors. The financial resources’ role in the investment decision-making process is analyzed in the study with the use of the North-West Federal District innovative companies’ accounting data. The study allowed to conclude, that the financial resources don’t play the key role in the companies’ decision-making process. Region and industry categorical variables are also analyzed

Keywords: innovative companies, investment activity, forecasting

References

  1. V. I. Cherenkov, V. P. Marianenko, N. I. Cherenkova. Some issues of developing the theory of innovation//Moscow university economics bulletin. Is. 1. M.: Lomonosov Moscow state university, 2019. P. 3-29. (In Russian.)
  2. V. L. Baburin, S. P. Zemtsov. Innovatsionnyy potentsial regionov Rossii. M.: OOO ID Universitetskaya kniga, 2017. 358 p. (In Russian.)
  3. W. Elsner. Complexity and innovation. Why beneficial effects of innovation highly depend//Journal of Institutional Studies [Zhurnal institutsionalnykh issledovaniy]. Vol. 10. № 4. 2018. P. 7-19. https://doi.org/10.17835/2076-6297.2018.10.4.007-019.
  4. A. Nikonova. Evolution of innovation mode within economic dynamics//Ekonomika i matematicheskie metody. Vol. 54. № 4. 2020. P. 3-28. https://emm.jes.su/S042473880003316-6-1. (In Russian.)
  5. D. Grushevenko, E. Grushevenko, V. Kulagin. Energy consumption of the russian road transportation sector: Prospects for inter-fuel competition in terms of technological innovation//Foresight and STI Governance. Vol. 12. № 4. 2018. P. 35-44. https://foresight-journal.hse.ru/en/2018-12-4/229724334.html
  6. О. Bulygina, A. Emelyanov, G. Ross, Y. Yashin. Investments, innovations, import substitution: simulation with elements of artificial intelligence in project risk management// Prikladnaya Informatika. [Journal of Applied Informatics]. 2020. Vol. 15. № 1. P. 68-102. (In Russian.)
  7. R Core Team. R: A language and environment for statistical computing. — Vienna, Austria: R Foundation for Statistical Computing, 2020. https://www.R-project.org
  8. Y. Xie. Knitr: A comprehensive tool for reproducible research in R. Implementing reproducible computational research/Ed. by Victoria Stodden, Friedrich Leisch, Roger D. Peng Chapman; Hall/CRC, 2014, P. 448. http://www.crcpress.com/product/isbn/9781466561595
  9. Y. Xie. Dynamic documents with R and knitr. 2nd ed. Boca Raton, Florida: Chapman; Hall/CRC, 2015. https://yihui.org/knitr
  10. Y. Xie. Knitr: A general-purpose package for dynamic report generation in R. R package version 1.30. 2020. https://yihui.org/knitr
  11. D. Gohel. Flextable: Functions for tabular reporting. R package version 0.5.11.009. 2020. https://davidgohel.github.io/flextable
  12. D. Gohel. Officer: Manipulation of Microsoft Word and PowerPoint documents. R package version 0.3.14. 2020. https://davidgohel.github.io/officer
  13. H. Wickham, J. Hester. Readr: Read rectangular text data. R package version 1.4.0. 2020. https://CRAN.R-project.org/package=readr
  14. M. Dowle, A. Srinivasan. Data.table: Extension of ‘data.frame‘. R package version 1.14.0. 2021. https://CRAN.R-project.org/package=data.table
  15. P. Grosjean, F. Ibanez. Pastecs: Package for analysis of space-time ecological series. R package version 1.3.21. 2018. https://CRAN.R-project.org/package=pastecs
  16. A. Dragulescu, C. Arendt. Xlsx: Read, write, format excel 2007 and excel 97/2000/XP/2003 files. R package version 0.6.5 [computer software]. 2020.https://CRAN.R-project.org/package=xlsx. 
  17. K. Müller, H. Wickham. Tibble: Simple data frames. R package version 3.1.0 [computer software]. 2021. https://CRAN.R-project.org/package=tibble
  18. H. Wickham. ggplot2: Elegant graphics for data analysis. Springer-Verlag New York, 2016. https://ggplot2.tidyverse.org
  19. E. Neuwirth. RColorBrewer: ColorBrewer palettes. R package version 1.1-2 [computer software]. 2014. https://CRAN.R-project.org/package=RColorBrewer
  20. K. Ushey, J. Allaire, Y. Tang. Reticulate: Interface to ’python’. R package version 1.18 [computer software]. 2020. https://CRAN.R-project.org/package=reticulate
  21. A. Letaw. Captioner: Numbers figures and creates simple captions. R package version 2.2.3.9000. 2015. https://github.com/adletaw/captioner
  22. H. Wickham. Tidyr: Tidy messy data. R package version 1.1.3. 2021. https://CRAN.R-project.org/package=tidyr.
  23. H. Wickham, D. Seidel. Scales: Scale functions for visualization. R package version 1.1.1. 2020. https://CRAN.R-project.org/package=scales
  24. H. Wickham, R. Francois, L. Henry, K. Muller. Dplyr: A grammar of data manipulation. R package version 1.0.5. 2021. https://CRAN.R-project.org/package=dplyr
  25. M. Gagolewski. R package stringi: Character string processing facilities. 2020. http://www.gagolewski.com/software/stringi
  26. A. Kassambara. Ggpubr: ggplot2 based publication ready plots. R package version 0.4.0. 2020. https://rpkgs.datanovia.com/ggpubr
  27. S. Meschiari. Use LaTeX expressions in plots. R package version 0.5.0. 2021. https://CRAN.R-project.org/package=latex2exp
  28. S. M. Bache, H. Wickham. magrittr: A Forward-Pipe Operator for R. R package version 2.0.1. 2020. https://CRAN.R-project.org/package=magrittr
  29. K. Slowikowski. Ggrepel: Automatically position non-overlapping text labels with ’ggplot2’. R package version 0.9.1. 2021. https://CRAN.R-project.org/package=ggrepel
  30. S. P. Millard. EnvStats: An R Package for Environmental Statistics. New York: Springer, 2013. https://www.springer.com
  31. G. van Rossum, F. L. Drake. Python 3 reference manual. Scotts Valley, CA: CreateSpace, 2009.
  32. J. D. Hunter. Matplotlib: A 2D graphics environment//Computing in Science & Engineering. IEEE Computer SOC, 2007. Vol. 9. № 3. P. 90-95.
  33. C. R. Harris, K. J. Millman, S. J. Walt et al. Array programming with NumPy//Nature. Springer Science; Business Media LLC. 2020. Vol. 585. № 7825. P. 357-362. https://doi.org/10.1038/s41586-020-2649-2.
  34. F. Pedregosa, G. Varoquaux, A. Gramfort et al. Scikit-learn: Machine learning in Python//Journal of Machine Learning Research. 2011. Vol. 12. P. 2825-2830.
  35. L. Buitinck, G. Louppe, M. Blondel et al. API design for machine learning software: Experiences from the scikit-learn project. ECML PKDD workshop: Languages for data mining and machine learning. 2013. P. 108-122.
  36. The pandas development team Pandas-dev/pandas: pandas. Zenodo, 2020. https://doi.org/10.5281/zenodo.3509134.
  37. McKinney Wes. Data Structures for Statistical Computing in Python. Proceedings of the 9th Python in Science Conference/Ed. by Stéfan van der Walt, Jarrod Millman. 2010. P.  56-61.
  38. Pandoc - about pandoc. 2020. https://pandoc.org/index.html
  39. Stack overflow. 2021. https://stackoverflow.com
  40. B. B. Demeshev. Sluchaynyye zametki. https://bdemeshev.github.io.  (In Russian.)
  41. R-bloggers.com. 2021. https://www.r-bloggers.com
  42. Nekommercheskaya internet-versiya KonsultantPlyus. [Consultant Plus non-commercial internet-version] . 2021. https://www.consultant.ru/cons/cgi/online.cgi?rnd=B999B9E3A856EF2B2050BFD8C669A27F&req=home.  (In Russian.)
  43. D. Pavlov, A. Vodolagina, D. Aksim. Iaaras/gostdown. GitLab. GitLab Community Edition. 2020. https://gitlab.iaaras.ru/iaaras/gostdown.  (In Russian.)
  44. V. S. Katkalo. Evolyutsiya teorii strategicheskogo upravleniya. 2nd edition. SPb.: St. Petersburg university press, Graduate school of management, 2011. 546 p. (In Russian.)
  45. Y. V. Simachev, M. G. Kuzyk, N. N. Zudin. The Impact of Public Funding and Tax Incentives on Russian Firms: Additionality Effects Evaluation//Zhurnal novoy ekonomicheskoy assotsiatsii. [Journal of the New Economic Association]. 2017. Vol. 34. № 2. P. 59-93. https://elibrary.ru/item.asp?id=29416938 . (In Russian.)
  46. G. Hamel, C. Prahalad. Konkuriruja za budushhee. Sozdanie rynkov zavtrashnego dnja/Translated from English. M.:: Olymp Business, 1994. 288 p. (In Russian.)
  47. S. R. Khalimova, A. T. Yusupova. The Effect of Regional Conditions on the Development of High-Tech Companies in Russia//Region: ekonomika i sotsiologiya. [Region: Economics and Sociology]. 2019. Vol. 103. № 3. P. 116-142. http://sibran.ru/journals/issue.php?id=177218&article_id=177266 . (In Russian.)
  48. N. I. Antipina. Transformation of Russian business in the conditions of transition to the digital economy: Sectoral and regional dimensions//Ekonomicheskaya nauka sovremennoy Rossii [Economics of Contemporary Russia]. 2018. Is. 2. P. 102-114. https://www.ecr-journal.ru/jour/article/view/277.  (In Russian.)
  49. I. Danilin. BAT Role in the Development of Chinese Internet Markets and the Future Challenges for the PRC Digital Economy//Mezhdunarodnye protsessy. [International Trends]. 2018. Vol. 16. № 4. P. 96-116. http://intertrends.ru/system/Doc/ArticlePdf/2087/gq90pLNXnG.pdf.  (In Russian.)
  50. V. V. Perskaya, E. P. Dzhagityana. Peculiarities of the vectors of post-crisis foreign direct investment in the Asia-Pacific region//Finansy: teorija i praktika. [Finance: Theory and Practice]. 2017. Vol. 21. № 6. P. 80-93. http://financetp.fa.ru/jour/article/view/591.  (In Russian.)
  51. E. M. Rogova, S. S. Galaktionov. The impact of corporate venture funds at the results of parent companies’ innovation activities//Innovatsii. [Innovation]. 2017. № 2. P. 22-28. https://maginnov.ru/ru/zhurnal/arhiv/2017/innovacii-n2-2017/vliyanie-korporativnyh-venchurnyh-fondov-na-rezultaty-innovacionnoj-deyatelnosti-materinskihkompanij  (In Russian.)
  52. U. Zh. Shalbolova. Economic Evaluation of Entrepreneurial Risks when Producing Building Materials Using Innovative Technologies//Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. Is. 8. 2017. P. 43-48. http://pgs1923.ru/ru/index.php?m=4&y=2017&v=08&p=06.  (In Russian.)
  53. A. O. Baranov, E. I. Muzyko, V. N. Pavlov. The evaluation of venture financing effectiveness of innovative project using real options method//Finansy: teorija i praktika [Finance: Theory and Practice]. 2017. Vol. 21. № 4. P. 77-87. http://financetp.fa.ru/jour/article/view/7.  (In Russian.)
  54. Gosudarstvennyy informatsionnyy resurs bukhgalterskoy (finansovoy) otchetnosti [State informational resource of the financial accounting reports]. 2021.https://bo.nalog.ru.  (In Russian.)
  55. T. Bateneva. Rating to grow. Competition stimulating and trusting environment creation play key roles in the economic development//Rossiyskaya gazeta [Russian newspaper]. 120 (7878). 2020. https://rg.ru/2019/06/04/ekspert-vshe-chto-prepiatstvuet-vnedreniiu-innovacij-v-rossii.html.  (In Russian.)
  56. Russian classification of economic activities introduced by decree of the federal agency on technical regulating and metrology on january 31, 2014 (as amended on december 29, 2020). Consultant Plus. https://login.consultant.ru/link/?req=doc&base=LAW&n=381748&dst=1000000001&date=11.04.2021&demo=2.  (In Russian.)
  57. scikit-learn developers. 2.7. Novelty and outlier detection. 2021. https://scikit-learn.org/stable/modules/outlier_detection.html
  58. P. J. Rousseeuw, K. V. Driessen. A fast algorithm for the minimum covariance determinant estimator//Technometrics. Taylor & Francis, 1999. Vol. 41. № 3. P. 212-223. https://www.tandfonline.com/doi/abs/10.1080/00401706.1999.10485670
  59. scikit-learn developers. Outlier detection with local outlier factor (LOF). 2021. https://scikit-learn.org/stable/auto_examples/neighbors/plot_lof_outlier_detection.html#sphx-glr-auto-examples-neighbors-plot-lof-outlier-detection-py
  60. G. W. Snecdecor, W. G. Cochran. Statistical methods. 8th ed. Wiley-Blackwell, 1991. 524 p.
  61. A. Kolomogoroff. Grundbegriffe der wahrscheinlichkeitsrechnung. Zentralblatt f r Mathematiker. Springer-Verlag Berlin Heidelberg, 1933. 62 p.
  62. N. V. Smirnov. Sui la distribution de w (Criterium de M.R.v. Mises)//Comptes Rendus. Vol. 202. Paris, 1936. P. 449-452.
  63. M. A. Stephens. EDF statistics for goodness of fit and some comparisons//Journal of the American Statistical Association [American Statistical Association, Taylor & Francis, Ltd.]. 1974. Vol. 69. № 347. P. 730-737. http://www.jstor.org/stable/2286009
  64. G. S. Watson. On chi-square goodness-of-fit tests for continuous distributions//Journal of the Royal Statistical Society. Series B (Methodological). [Royal Statistical Society, Wiley]. 1958. Vol. 20. № 1. P. 44-72. http://www.jstor.org/stable/2983906
  65. P. M. Shankar. Pedagogy of chi-square goodness of fit test for continuous distributions//Computer Applications in Engineering Education. 2019. Vol. 27. № 3. P. 679-689. https://onlinelibrary.wiley.com/doi/abs/10.1002/cae.22107
  66. T. A. Arnold, J. W. Emerson. Nonparametric goodness-of-fit tests for discrete null distributions//The R Journal. 2011. Vol. 3. № 2. P. 34-39. http://journal.r-project.org/archive/2011-2/RJournal_2011-2_Arnold+Emerson.pdf
  67. J. Gross, U. Ligges. Nortest: Tests for Normality. R package version 1.0-4. 2015. https://CRAN.R-project.org/package=nortest
  68. A. V. Bukhvalov. Managerial theory of firm: Towards a synthesis of finance and strategic management//Russian Management Journal. [Rossiyskiy zhurnal menedzhmenta]. 2016. Vol. 14. № 4. P. 105-126. https://rjm.spbu.ru/article/view/125.  (In Russian.)
  69. T. Bateneva. Staying at the same place. Innovation activity results are low than expected in Russia//Rossiyskaya gazeta [Russian newspaper]. 269 (8323). 2020. https://rg.ru/2020/11/30/rezultaty-innovacionnoj-deiatelnosti-v-rossii-okazalis-nizhe-ozhidaniia.html.  (In Russian.)

Authors