Feasibility study and calculation of the market value of the technology to produce metal-carbon nanocomposites

The features and application of multicomponent nanoparticles of iron group alloys and methods of their protection with a carbon shell are considered. A new method for the synthesis of metal-carbon nanocomposites by pyrolysis during IR heating of metal salt-polymer systems is presented. A feasibility study and calculation of the market value of the technology to produce metal-carbon nanocomposites have been carried out. To increase the accuracy of calculations of the feasibility study of a project to produce a metal-carbon nanocomposite and the market value of the technology for its production, it is proposed to use two iterations of calculations. At the first iteration, the technology at the market value, determined only by the cost approach, is included in the calculation of the production cost of the metal-carbon nanocomposite. Then, taking into account and on the basis of a feasibility study of a project for the production of a metal-carbon nanocomposite, the market value of the technology is calculated using an income approach. After agreeing on the values of the market value of the technology, calculated by the cost and profitable approach, the specified value of the market value of the technology is included in the second iteration (recalculation) of the feasibility study for the nanocomposite production project. Thus, the accuracy of calculating the efficiency of a project to produce a metal-carbon nanocomposite and the market value of the technology underlying this project is significantly increased. The procedure (sequence) of calculation is given on the example of a project for obtaining a metal-carbon nanocomposite FeCoNi/C

Keywords: feasibility study, market value of technology, metal-carbon nanocomposite, technology efficiency, pyrolysis, infrared heating, metal salts, polyacrylonitrile, radio-absorbing material

References

  1. I. V. Kozhitov, D. G. Zaporotskova, N. P. Muratov et al. Synthesis, properties and modeling of metal-carbon nanocomposites: monograph; Feder. state ed. educated. institution of higher. education «Volgogr. state un-t»; Nat. issled. technol. un-t «MISIS». Volgograd: VolGU Publishing House, 2019. 537 p.
  2. S. S. Afghahi, A.S. Shokuhfar. Two step synthesis, electromagnetic and microwawe absorbing properties of FeCo@C core-schell nanostructure//J. of Magnetism and Magnetic Materials. 370 (2014). 37-44.
  3. E. M. M. Ibrahim, Silke Hampel, A. U. B. Wolter et al. Superparamagnetic FeCo and FeNi nanocomposites dispersed in submicrometer-sized C spheres//J. Physical Chemistry. 2012. 116. 22509-22517.
  4. X. G. Liu, Z. Q. Ou, D. Y.Geng et al. Influence of a graphite shell on the thermal and electromagnetic characteristics of FeNi nanoparticles//Carbon. 48(2010). 891-897.
  5. X. Liu, S. W. Or, S. L. Ho et al. Full X–Ku band microwave absorption by Fe(Mn)/Mn7C3/C core/shell/shell structured nanocapsules//J. Alloys Compd. 509 (2011). 9071-9075.
  6. Q. Liu, B. Cao, C.Feng et al. High permittivity and microwave absorption of porous graphitic carbons encapsulating Fe nanoparticles//Compos. Sci. Technol. 72 (2012). 1632-1636.
  7. Z. Xie, D.Geng, X.Liu et al. Magnetic and microwave-absorption properties of graphite-coated (Fe,Ni) nanocapsules//Mater. Sci. Technol. 27 (2011). 607-614.
  8. Y. Yang, S.Qia, J.Wang, Preparation and microwave absorbing properties of nickel-coated graphite nanosheet with pyrrole via in situ polymerization//J. Alloys Compd. 520 (2012). 114-121.
  9. D. L. Zhao, J. M. Zhang, X. Li, Z. M. Shen, Electromagnetic and microwave absorbing properties of Co-filled carbonnanotubes//J. Alloys Compd. 505 (2010). 712-716.
  10. D. L. Zhao, X. Li, Z. M. Shen. Preparation and electromagnetic and microwave absorbing properties of Fe-filled carbonnanotubes//J. Alloys Compd. 471 (2009). 457-460.
  11. Yuzun Fan, Haibin Yang, Xizhe Liu et al. Preparation and study on radar absorbing materials of nickel-coated carbon fiber and flakegraphite//J. Alloys Compd. 461 (2008). 490-494.
  12. T. Zhang, D. Huang, Y. Yang et al. Fe3O4/carbon composite nanofiber absorber with enhanced microwave absorption performance//Mater. Sci. Eng. B 178 (2013). 1-9.
  13. Z. Wang, P. Xiao. N. He, Synthesis and charactenst.es о carbon encapsulated magnetic nanopartic.cs produced by a hydrothermal reaction//Carbon. 44 (2006). 3277-3284.
  14. A. Sngh, P. Lavigne, Deposition of diamond-like carbon films by low energy ion beam dc magnetron sputtering//Surf. Coat. Technoi. 47 (1991). 188-200.
  15. F. Dumitrache, I. Morjan, С. Fleaca et al. Parametric studies on iron-carbon composite nanopartides synthesized by laser pyrolys, for increased passivation and high iron content//Appi, Surf. Sci. 257 (2011). 5265-5269.
  16. F. Yu, J. N. Wang, Z. M. Sbeng, L. F. Su. Synthesis of carbon encapsulated magnetic nanopartides by spray pyrolysis of iron carbonyl and ethanol//Carbon. 2005. 3018-3021.
  17. X. G. Lin, Z. Q. On, D. Y. Geng et al. Influence of a graphite shell on the therm electromagnetic characteristics of FeNi nanoparticles, Carbon 48 (2010) 891-897.
  18. L.V. Kozhitov, S.G. Emelyanov, V.G. Kosushkin et al. Technology of materials for micro- and nanoelectronics: monograph. Kursk: South-West. state University, 2012 . 862 p.
  19. L. V. Kozhitov, D. G. Muratov, V. G. Kostishin et al. Method for the synthesis of CoNi/C nanocomposite based on polyacrylonitrile. RF patent № 2558887 dated 07/08/2015.
  20. L. V. Kozhitov, D. G. Muratov, V. V. Kozlov et al. Method of synthesis of metal-carbon nanocomposite FeCo/C. RF patent № 2552454 dated 08.10.2015.
  21. L. V. Kozhitov, D. G. Muratov, V. G. Kostishin et al. A method for producing FeNi3/C nanocomposite on an industrial scale. Patent for invention of the Russian Federation № 2593145 dated 07.07.2016.
  22. L. V. Kozhitov, V. S. Sonkin, A. R. Muraleev et al. Method for the synthesis of Ag/C nanocomposites. Patent RU 2 686 223. Published: 24.04.2019.
  23. D.G. Muratov, V.V. Kozlov, V.V. Krapukhin et al. Investigation of electrical conductivity and semiconductor properties of a new carbon material based on IR-pyrolyzed polyacrylonitrile (C3H3N)n)//Izvestiya vuzov. Electronic engineering materials. 2007. № 3. P. 26-30.
  24. L. V. Kozitov, A. V. Kostikova, V. V. Kozlov et al. The FeNi3/C Nanocomposite Formation from the Composite of Fe and Ni Salts and Polyacrylonitrile under IR-Heating//J. of nanoelectronics and optoelectronics. 2012. № 7. P. 419-422.
  25. L. M. Zemtsov, G. P. Karpacheva, M. N. Efimov et al. Carbon nanostructures based on IR-pyrolyzed polyacrylonitrile//VMS. A. 2006. Vol. 48. № 6. P. 977-982.
  26. G. P. Karpacheva, K. A. Bagdasarova, G. N. Bondarenko et.al. Co-Carbon Nanocomposites Based on IR-Pyrolyzed Polyacrylonitrile//Polymer Science. A. 2009. Vol. 51. № 11-12.P. 1297-1302.
  27. L. E. Dzidziguri, D. G. Muratov, E. N. Sidorova. Preparation and structure of metal+carbon nanocomposites Cu-C//Nanotechnologies in Russia. 2010. Vol. 5. № 9-10. P. 665-668.
  28. B. G. Kiselev, L. V. Kozhitov, V. V. Kozlov, M. V. Ponomarev. Feasibility study and determination of the market value of the technology for the production of metal-carbon nanocomposites//Non-ferrous metals. 2010. № 3. P. 15-20.
  29. B. G. Kiselev, L. V. Kozhitov, T. T. Kondratenko, T. A. Valko. Feasibility study of the production technology of rectifier diodes on nonplanar silicon and determination of its market value//Non-ferrous metals. 2010. № 7. P. 6-10.
  30. B. G. Kiselev, L. V. Kozhitov, V. V. Kozlov, I. V. Yeltsina. Feasibility study of the technology to produce a composite with silver nanoparticles and determination of its market value//Non-ferrous metals. 2011. № 7. P. 6-10.
  31. B. G. Kiselev, V. V. Kozlov, A. V. Popkova et al. Feasibility study of graphene production technology and determination of its market value//Non-ferrous metals. 2012. № 12. P. 7-10.
  32. B. G. Kiselev, A. V. Kostikova, A. V. Popkova et al. Feasibility study and determination of the market value of the technology to produce metal-carbon nanocomposite FeNi3/C// Non-ferrous metals. 2013. № 3. P. 6-10.
  33. B. G. Kiselev, L. V. Kozhitov, D. G. Muratov et al. Feasibility study to produce FeCo/C nanocomposite and assessment of the market value of the technology//Non-ferrous metals. 2014. № 3. P. 6-9.
  34. B. G. Kiselev, L. V. Kozhitov, V. V. Kozlov et al. Cu/C nanocomposite production technology: feasibility study and market value determination//Non-ferrous metals. 2014. № 4. P. 6-10.
  35. B. G. Kiselev, L. D. Miteva, A. V. Koltygin. Evaluation of the market value of the patent «Casting mold for centrifugal casting of large-sized shaped castings of complex shape of their heat-resistant and chemically active alloys»//Non-ferrous metals. 2019. № 12. P. 7-13.
  36. B. G. Kiselev, L. V. Kozhitov, E. Yu. Sidorov et al. Features of advanced marketing in the nanoindustry//Innovations. № 12. 2020. P. 3-13.
  37. A. N. Kozyrev, V. L. Makarov. Valuation of intangible assets and intellectual property. M.: RITs GSh VS RF, 2003. 398 p.
  38. Capital asset valuation model - CAPM (W. Sharp) in Excel. https://finzz.ru/model-ocenki-kapitalnyx-aktivov-capm-sharpa-v-excel.html

Authors