Study of the strength of the foundations of engineering structures for the attenuation of the electromagnetic field in the city of Neryungri

In South Yakutia, in the «M» quarter of the city of Neryungri, the possibility of the method of remote inductive sensing of geophysics to assess the strength of a sandstone massif in a predicted water-saturated state within the sphere of its mechanical and thermal interaction with engineering structures has been proved. The physical basis for solving this problem is the study of the attenuation in the layer of annual heat exchanges of the harmonic high-frequency field of a vertical magnetic dipole. It has been established that the measure of field attenuation strongly depends on the strength of the sandstone, determined in the laboratory. Thanks to this connection, a probabilistic model was built for the entire city of Neryungri and a forecast was made of the change in the average values of the strength of a water-saturated sandstone massif with a relative error of ±20,3%. This error is almost equal to the error of the laboratory determination of the strength of samples of rocky-semi-rocky soils. The statistics of the results of applying the probabilistic model certifies that even in a water-saturated state, the sandstone massif remains the rocky foundation of engineering structures. In this state, with a probability of about 70%, the massif is classified as a category of medium-strength rocky soils with values of 17,55-50,95 MPa

Keywords: quarter «M», engineering structures, sandstone massif, strength, layer of annual heat exchanges, remote inductive sensing method, attenuation coefficient of the harmonic high-frequency field of a vertical magnetic dipole.

References

  1. L. G. Neradovskij. Tekhnologiya izucheniya merzlyh gruntov kriolitozony Rossii po zatuhaniyu elektromagnitnyh polej//Innovation. 2018. № 11 (241). P. 122-135.
  2. GOST 21135.2-84. Porody gornye. Metody opredeleniya predela prochnosti pri odnoosnom szhatii [Rocks. Methods for determining uniaxial compression strength]. Moskva: Izdvo standartov, 1984. 7 p.
  3. O. K. Voronkov. Inzhenernaya sejsmika v kriolitozone (izuchenie stroeniya i svojstv merzlyh i talyh gornyh porod i massivov) [Engineering Seismology for Permafrost (Investigations of the Structure and Properties of Frozen and Thawed Rocks and Masses)]. Saint Petersburg: Izdvo OAO VNIIG im. B. E. Vedeneeva, 2009. 401 p.
  4. A. I. Savich, Z. G. Yashchenko. Issledovanie uprugih i deformacionnyh svojstv gornyh porod sejsmoakusticheskimi metodami/Pod red. A. M. Epinat'evoj [Study of Elastic and Deformation Properties of Rocks by Seismoacoustic Methods. Ed. A. M. Epinatieva]. Moskva: Izdvo Nedra, 1979, 214 p.
  5. Rekomendacii po metodike sostavleniya geofizicheskih skhem (modelej) skal'nyh massivov v osnovaniyah betonnyh plotin. P 96-81. [Guidelines for the Compilation of Geophysical Schemes (Models) of Rock Masses in the Foundations of Concrete Dams]. Leningrad: Izdvo VNIIG, 1981. 113 p.
  6. Rekomendacii po izucheniyu metodami inzhenernoj sejsmiki staticheskih i dinamicheskih harakteristik deformiruemosti skal'nyh osnovanij gidrosooruzhenij v severnoj stroitel'no-klimaticheskoj zone (SSKZ). P 19-85 [Guidelines for the Investigation of Static and Dynamic Deformation Characteristics of Rock Foundations Using Seismic Methods for Hydraulic Projects in the Northern Climatic Zone]. Leningrad: Izdvo VNIIG, 1985. 102 p.
  7. Rekomendatsii po opredeleniyu fiziko-mekhanicheskikh svoystv merzlykh gruntov geofizicheskimi metodami [Recommendations for determining the physical and mechanical properties of frozen soils by geophysical methods]. PNIIIS. Moscow: Stroyizdat, 1989. 56 p.
  8. Yuzhnaya Yakutiya: merzlotno-gidrogeologicheskie i inzhenerno-geologicheskie usloviya Aldanskogo gornopromyshlennogo rajona [Southern Yakutia. Permafrost hydrogeological and engineering-geological conditions of the Aldan mining region]/V. A. Kudryavtsev (Ed.). Moscow: Moscow State University Press, 1975. 444 p.
  9. V. M. Zhelinskij. Mezozojskaya uglenosnaya formaciya Yuzhnoj Yakutii [Mesozoic coal-bearing formation of South Yakutia]. Novosibirsk: Nauka, 1980. 119 p.
  10. S. N. Buldovich, V. S. Melent'ev, M. S. Naumov, O. S. Furikevich. Rol' novejshih razryvnyh narushenij v formirovanii merzlotno-gidrogeologicheskih uslovij (na primere Neryungrinskoj sinklinali Yuzhno-Yakutskogo mezozojskogo progiba)//Merzlotnye issledovaniya [Permafrost research]. Issue XV. Moskva: Izd-vo MGU, 1976. P. 120-125.
  11. L. G. Neradovskij. Tekhnologiya elektromagnitnogo zondirovaniya myorzlyh gruntov sloya godovyh teplooborotov [Technology of electromagnetic sounding of frozen soils of the layer of annual heat exchanges]. Moskva: Izd. dom Nauchnoe obozrenie, 2018. 622 p.
  12. V. I. Igolkin, G. Ya. Shaydurov, O. A. Tronin, M. F. Khokhlov. Metody i apparatura elektrorazvedki na peremennom toke [The Methods and Equipment of Electrical Prospecting with Alternating Current]. Krasnoyarsk: SFU, 2016. 272 p.
  13. Istoriya — Institut geofiziki UrO RAN [History — Institute of Geophysics, Ural Branch of the Russian Academy of Sciences]. Elektronnye tekstovye dannye. Oficial'nyj sajt Instituta geofiziki UrO RAN. http://igfuroran.ru/struktura/laboratoriya-ekologicheskoj-geofiziki/istoriya.
  14. J. Boaga. The use of FDEM in hydrogeophysics: A review//Journal of Applied Geophysics. 2017. Vol. 139. P. 36-46.
  15. J. A. Doolittle, E. C. Brevik. The use of electromagnetic induction techniques in soils studies//Geoderma. 2014. Vol. 223-225. P. 33-45.
  16. A. N. Sartorealnldi, R. B. French. Electro-magnetic induction methods for mapping permafrost along northern pipeline corridors//Prog. 4th CAN. Permafrost Conf. Geophysics and Subsea Permafrost, 1982. P. 283-295.
  17. J. D. McNeill. EM-34-3 survey interpretation techniques. Technical Note TN-8. Geonics Limited Mississauga. Ontario, Canada, 1980. 15 p.
  18. V. A. Davydov. Dvumernaya inversiya indukcionnyh zondirovanij//Questions of natural science. Vol 1 (15). 2018. P. 62-69.
  19. Kompleks srednechastotnoj apparatury elektromagnitnogo zondirovaniya (SEMZ): texnicheskoe opisanie [System of medium-frequency equipment for electromagnetic sounding (SEMS): technical description]. Krasnoyarsk: NPO Sibtsvetmetavtomatika USSR, 1991. 30 p.
  20. V. F. Lebedev, V. I. Onushchenko, L. M. Litvintseva. Kompleks SEMZ: metodicheskoe posobie [The MFES Unit: methodical guide]. Krasnoyarsk: NPO Sibtsvetmetavtomatika, 1991. 60 p.
  21. L. G. Neradovskij. Veroyatnostnaya model' prognoza prochnosti peschanikov metodom distancionnogo induktivnogo zondirovaniya v kriolitozone Yuzhnoj Yakutii (na primere g. Neryungri)//Cryosphere of the Earth. 2022. Vol. XXVI. № 6. P. 43-57. doi: 10.15372/KZ20220605.
  22. H. Basarir, L. Tutluoglu, C. Karpuz. Penetration rate prediction for diamond bit drilling by adaptive neuro-fuzzy inference system and multiple regressions//Eng. Geology. 2014. Vol. 173. P. 1-9.
  23. A. P. Kulaichev. Metody i sredstva kompleksnogo analiza dannykh [Methods and means of complex data analysis]. Moscow: Forum, Infra-M, 2006. 512 p.
  24. L. G. Neradovskij. Ocenka prochnostnogo sostoyaniya skal'no-poluskal'nogo osnovaniya inzhenernyh sooruzhenij g. Neryungri v kriolitozone Yuzhnoj Yakutii po dannym geofiziki (metoda distancionnogo induktivnogo zondirovaniya)//Subsoil use XXI century. 2022. № 4 (96). P. 91-97.
  25. Fizicheskie svojstva gornyh porod i poleznyh iskopaemyh (Petrofizika): spravochnik geofizika [Physical properties of rocks and minerals (Petrophysics): handbook of geophysics]. Moscow: Nedra, 1976. 527 p.
  26. GOST 25100-2020. Grunty. Klassifikaciya [Soils. Classification]. Moscow: Standartinform, 2020. 38 p.

Authors