Joint center for scanning probe microscopy LLC «Nova SPb» – St. Petersburg electrotechnical university «LETI» in the field of radio electronics is a new type center for solving priority problems

Introduction. The Scanning Probe Microscopy Center has been opened at St. Petersburg Electrotechnical University «LETI». A special feature of the center is the close cooperation of St. Petersburg Electrotechnical University «LETI» and the LLC «Nova SPb» group of leading companies in the development of analytical equipment for scanning probe microscopy in Russia. The need to ensure the leadership position of the Russian Federation in priority areas of radio electronics is the reason for the creation of this Center. Aim. This article covers the development of new nanodiagnostics methods and their application in various areas of radio electronics. Materials and methods. This part of the review discusses the materials and methods that were used by LLC «Nova SPb» and St. Petersburg Electrotechnical University «LETI» to develop the capabilities of new analytical equipment and the achieved indicators. For this purpose, the Center is based on the principles of changing equipment owned by LLC «Nova SPb» as new types of devices develop, training professional personnel for LLC «Nova SPb» and organizations using its equipment, as well as the active participation of Center employees in solving modern pressing problems of science and technology. Results. The results obtained at St. Petersburg Electrotechnical University «LETI» using the principles of active metrics, and priority tasks in the field of creating highly efficient solar cells based on perovskites and tandem structures using perovskites are considered. Conclusion. The development of active metrics techniques with the opening of the SPM Center confirms the prospects of their application. This will allow scientists to expand the goals and objectives in the field of micro- and nanoelectronics, optoelectronics, sensors, etc., as well as develop work on developing the functionality of analytical instrumentation. Unique equipment and trained professional personnel will allow the SPM Center to solve many pressing problems in the field of radio electronics and nanotechnology

Keywords: scanning probe microscopy, atomic force microscopy, near-field optical microscopy, active metrics, solar cells, nanotechnology.

References

  1. https://ntmdt-russia.com/application/webinar/
  2. V. A. Moshnikov, Yu. M. Spivak, P. A. Alekseyev, N. V. Permuakov. Atomno-silovaya mikroskopiya dlya issledovaniya nanostrukturirovannykh materialov i pribornykh struktur [Atomic force microscopy for the study of nanostructured materials and instrumental structures]. Textbook. manual, St. Petersburg: Publishing house of St. Petersburg Electrotechnical University «LETI», 2014. 144 p.
  3. Novyye nanomaterialy. Sintez. Diagnostika. Modelirovaniye [New nanomaterials. Synthesis. Diagnostics. Modeling]: monograph/Ed. V. A. Moshnikov, O. A. Alexandrova. St. Petersburg: Publishing house of St. Petersburg Electrotechnical University «LETI», 2015. 248 p.
  4. A. O. Belorus, A. I. Pastukhov, S. Yu. Krasnoborod'ko et al. Zond blizhnepol'nogo opticheskogo mikroskopa [Near-field optical microscope probe]. Patent RU 2731164 C1, 31.08.2020. № 2020110147, 2020.
  5. D. A. Kozodayev, O. A. Korepanov, V. A. Moshnikov. Fluorestsentnyy zondovyy datchik na osnove KKT sistem I-III-VI [Fluorescent probe sensor based on CQD systems I-IIIVI]// Collection of works: «Chemical thermodynamics and kinetics». Collection of scientific papers of the XII International Scientific Conference. Veliky Novgorod, 2022. P. 154-155.
  6. A. E. Madison, D. A. Kozodaev, A. N. Kazankov et al. Aperiodic diffraction grating based on the relationship between primes and zeros of the Riemann zeta function//Technical Physics. 2024. Vol. 69. № 4. P. 620-624.
  7. D. A. Kozodayev, S. I. Nesterov, M. A. Trusov. Sovremennyye nauchnyye instrumenty dlya nanomasshtabnykh issledovaniy ferroelektricheskikh materialov [Modern scientific instruments for nanoscale research of ferroelectric materials]//XXIII All-Russian Conference on the Physics of Ferroelectrics. Theses. Tver, 2023. P. 30.
  8. I. A. Novikov, D. A. Kozodayev, V. A. Moshnikov. Issledovaniye nanorazmernykh struktur s ispol'zovaniyem effekta vnutrennego treniya [Study of nano-sized structures using the effect of internal friction]//In the book: Physics of semiconductors and nanostructures, semiconductor opto- and nanoelectronics. Abstracts of reports of the All-Russian Scientific Youth Conference. St. Petersburg, 2023. P. 30.
  9. S. Kalinin, A. Gruverman (eds.). Scanning Probe Microscopy of Functional Materials: Nanoscale Imaging and Spectroscopy. Springer, 2010. 563 p.
  10. D. A. Kozodayev, A. Yu. Gagarina, Yu. M. Spivak et al. Testovyye struktury na geteroepitaksial'nykh sloyakh PbTe(111)-on-Si so stupenchatym kharakterom submikronnogo rel'yefa poverkhnosti [Test structures on heteroepitaxial layers of PbTe(111)-on-Si with a stepped nature of the submicron surface relief]//Physico-chemical aspects of the study of clusters, nanostructures and nanomaterials. 2023. № 15. P. 127-134. doi: 10.26456/pcascnn/2023.15.127.
  11. Kozodayev D.A., Kostromin S.V., Trusov M.A. Sovremennyye nauchnyye instrumenty dlya nanomasshtabnykh issledovaniy magnitnykh materialov [Modern scientific instruments for nanoscale research of magnetic materials]. VIII All-Russian Conference on Nanomaterials. Moscow. November 21-24, 2023 / Collection of materials. M.: IMET RAS, 2023. P. 348.
  12. H. P. Hopster. Oepen. Magnetic microscopy pf nanostructures. Springer, 2005. 334 p.
  13. V. A. Moshnikov, Yu. M. Spivak/ Metrologicheskiy testovyy obrazets [Metrological test sample]. Patent RF № 95396 U1, 2010.
  14. V. A. Moshnikov, Yu. M. Spivak, E. V. Maraeva. Metodiki atomno-silovoy mikroskopii dlya diagnostiki nanostrukturirovannykh sloyev [Atomic force microscopy techniques for diagnosing nanostructured layers]. Chapter 1 in the monograph: Physics and technology of nanostructured functional materials/Ed. S. D. Khanina and Yu. A. Kumzerova. St. Petersburg: Publishing House of the Military Academy of Communications, 2023. 392 p.
  15. M. Shishov, V. Moshnikov, I. Sapurina. Self-organization of polyaniline during oxidative polymerization: formation of granular structure//Chemical Papers. 2013. Vol. 67. № 8. P. 909-918.
  16. N. V. Permyakov, Yu. M. Spivak, V. A. Moshnikov et al. Novyye vozmozhnosti zondov atomno-silovoy mikroskopii pri funktsionalizatsii polianilinom [New possibilities of atomic force microscopy probes during functionalization with polyaniline]//High-molecular compounds. Series A. 2018. Vol. 60. № 3. P. 262-272. doi: 10.7868/S2308112018030100.
  17. A. A. Ryabko, M. K. Ovezov, A. I. Maksimov et al. Konkuriruyushchiye mekhanizmy rosta pri formirovanii polikristallicheskoy plenki MAPbI3 [Competing growth mechanisms during the formation of a polycrystalline film MAPbI3]//Bulletin of Nov State University. 2023. 3 (130). P. 365-373. doi: 10.34680/2076-8052.2023.1(132).365-373.
  18. E. N. Muratova, I. A. Vrublevsky, A. K. Tuchkovsky et al. Preparation of copper films with developed surface morphology and microcrystalline structure at high current densities [Preparation of copper films with developed surface morphology and microcrystalline structure at high current densities]//Bulletin of NovSU. 2023. 3 (132). 357-364. doi: 10.34680/2076-8052.2023.3(132).357-364.
  19. E. N. Muratova, V. A. Moshnikov, A. N. Aleshin et al. Issledovaniye i optimizatsiya protsessov kristallizatsii rastvorov gibridnykh galogenidnykh perovskitov sostava CH3NH3PbI3 [Research and optimization of crystallization processes for solutions of hybrid halide perovskites with the composition CH3NH3PbI3]//Physics and Chemistry of Glass. 2023. Vol. 49. № 6. P. 662-671. doi: 10.31857/S013266512360022X.
  20. Y. Huang, Z. Yuan, J. Yang et al. Highly efficient perovskite solar cells by building 2D/3D perovskite heterojuction in situ for interfacial passivation and energy level adjustment//Sci China Chem. 2023. 66. P. 449-458. https://doi.org/10.1007/s11426-022-1436-7.

Authors