Methods of comparative analysis of innovative and technological characteristics of pharmaceutical products

We have identified and selected the patent-market parameters of pharmaceutical innovations. An algorithm for comparing innovative and technological characteristics of pharmaceutical products using data-mining technologies (association search, classification and clustering of data) is proposed. We suggested using the distance of the object characteristic to the cluster center as the main distinguishing mathematical parameter of objects with a similar consumer purpose. The method can be successfully applied as a tool to support decision-making that requires a comparative assessment of the commercial potential of innovative products of industrial enterprises in the high-tech sector

Keywords: innovative pharmaceutical products, patent-market parameters of comparison.


  1. A. Chursin, Yu. Vlasov, Yu. Makarov. Innovation as a Basis for Competitiveness. Theory and practice. 2016. P. 6-9.
  2. V. N. Volkova, A. S. Kudryavtseva. Modeli dlya upravleniya innovatsionnoy deyatel'nost'yu promyshlennogo predpriyatiya [Models for managing the innovation activity of an industrial enterprise]//Otkrytoe obrazovanie [Open Education]. 2018. № 4. P. 64-73. (In Russian.)
  3. S. V. Amelin. Vybor innovacionnyh al'ternativ na osnove modelirovanija [The choice of innovative alternatives based on modeling]//Jekonominfo [Econominfo]. 2016. № 26. P. 93-95. (In Russian.)
  4. E. Bryzgalova, M. Kovshova, T. Gridneva. Current trends in the pharmaceutical industry in Russia//Economic and Social Development: Book of Proceedings. 2018. P. 456-462.
  5. S. Timofeeva. Innovative Potential As A Factor For Increasing The Competitiveness Of Enterprises In The Pharmaceutical Industry//Entrepreneurship. 2016. Vol. 4. №. 1. P. 144-165.
  6. O. K. Al'sova, K. S. Uskova. Programmnaya sistema klasternogo analiza dannykh smeshannogo tipa [Software system for cluster analysis of mixed-type data]//Avtomatika i programmnaya inzheneriya [Automation and software engineering]. 2013. № 1. P. 75-81. (In Russian.)
  7. S. Altuntas, T. Dereli, A. Kusiak. Analysis of patent documents with weighted association rules//Technological Forecasting and Social Change. 2015. Vol. 92. P. 249-262.
  8. J. Kim, M. Hwang, D.-H. Jeong, H. Jung. Technology trends analysis and forecasting application based on decision tree and statistical feature analysis//Expert Systems with Applications. 2012. Vol. 39. №. 16. P. 12618-12625.
  9. D. Kukolj, Z. Tekic, Lj. Nikolic et al. Comparison of algorithms for patent documents clusterization//2012 Proceedings of the 35th International Convention MIPRO. IEEE, 2012. P. 995-997.
  10. K. S. Ershov, T. N. Romanova. Analiz i klassifikatsiya algoritmov klasterizatsii [Analysis and classification of clustering algorithms]//Novye informatsionnye tekhnologii v avtomatizirovannykh sistemakh [New information technologies in automated systems]. 2016. № 19. (In Russian.)
  11. S. V. Kortov, D. B. Shul'gin, A. A. Karimova, A. V. Rodnin. Otsenka patentnykh i produktovykh portfeley farmatsevticheskikh kompaniy pri konkurentnom analize [Patent and product portfolios evaluation in competitive analysis of pharmaceutical companies]//Innovatsii [Innovations]. 2020. № 3. P. 30-37. (In Russian.)
  12. Reyting innovatsionnoy aktivnosti farmatsevticheskikh kompaniy [Rating of innovative activity of pharmaceutical companies]//Issledovatel'skoe podrazdelenie mediakholdinga «Ekspert» [Research division of the media holding «Expert»].  (In Russian.)
  13. Gosudarstvennyj reestr lekarstvennyh sredstv [State Register of Medicines]. (In Russian.)
  14. Gosudarstvennyy reestr predel’nykh otpusknykh tsen [State register of maximum selling prices]. (In Russian.)
  15. World Intellectual Property Organization.
  16. Databases for searching patent documents. Federal Institute of Industrial Property. .
  17. Edinaya informatsionnaya sistema v sfere zakupok [Unified information system in the field of procurement].  (In Russian.)