Работа посвящена исследованию факторов инвестиционной активности компаний в инновационной деятельности. На основе данных бухгалтерской отчетности компаний Северо-Западного федерального округа, работающих в инновационных отраслях экономики, сделан вывод об отсутствии у
финансовых ресурсов определяющей роли в принятии инвестиционных решений в компаниях. Также проанализированы качественные переменные,
характеризующие регион и отрасль компании
Ключевые слова: инновационные компании, инвестиционная активность, прогнозирование
Список использованных источников
- В. И. Черенков, В. П. Марьяненко, Н. И. Черенкова. Развитие теории инноваций: Некоторые проблемы//Вестник Московского университета. Серия 6. «Экономика». Вып. 1. М.: Московский государственный университет им. М. В. Ломоносова, 2019. С. 3-29.
- В. Л. Бабурин, С. П. Земцов. Инновационный потенциал регионов России. М.: ООО ИД Университетская книга, 2017. 358 с.
- В. Элснер. Экономика сложности и инновации: Почему положительные эффекты от инноваций не гарантированы//Журнал институциональных исследований. Т. 10. № 4. 2018. С. 7-19. https://doi.org/10.17835/2076-6297.2018.10.4.007-019.
- А. А. Никонова. Трансформация моделей инноваций в экономической динамике//Экономика и математические методы. 2020. Т. 54. № 4. С. 3-28.https://emm.jes.su/S042473880003316-6-1.
- Д. Грушевенко, Е. Грушевенко, В. Кулагин. Энергопотребление российского автомобильного сектора: Роль технологических инноваций в межтопливной конкуренции// Форсайт. 2018. Т. 12. № 4. С. 35-44. https://foresight-journal.hse.ru/2018-12-4/229724334.html.
- О. В. Булыгина, А. А. Емельянов, Г. В. Росс, Е. С. Яшин. Инвестиции, инновации, импортозамещение: имитационное моделирование с элементами искусственного интеллекта в управлении проектными рисками//Прикладная информатика. 2020. Т. 15. № 1. С. 68-102.
- R Core Team. R: A language and environment for statistical computing. — Vienna, Austria: R Foundation for Statistical Computing, 2020. https://www.R-project.org.
- Y. Xie. Knitr: A comprehensive tool for reproducible research in R. Implementing reproducible computational research/Ed. by Victoria Stodden, Friedrich Leisch, Roger D. Peng Chapman; Hall/CRC, 2014, P. 448. http://www.crcpress.com/product/isbn/9781466561595.
- Y. Xie. Dynamic documents with R and knitr. 2nd ed. Boca Raton, Florida: Chapman; Hall/CRC, 2015. https://yihui.org/knitr.
- Y. Xie. Knitr: A general-purpose package for dynamic report generation in R. R package version 1.30. 2020. https://yihui.org/knitr.
- D. Gohel. Flextable: Functions for tabular reporting. R package version 0.5.11.009. 2020. https://davidgohel.github.io/flextable.
- D. Gohel. Officer: Manipulation of Microsoft Word and PowerPoint documents. R package version 0.3.14. 2020. https://davidgohel.github.io/officer.
- H. Wickham, J. Hester. Readr: Read rectangular text data. R package version 1.4.0. 2020. https://CRAN.R-project.org/package=readr.
- M. Dowle, A. Srinivasan. Data.table: Extension of ‘data.frame‘. R package version 1.14.0. 2021. https://CRAN.R-project.org/package=data.table.
- P. Grosjean, F. Ibanez. Pastecs: Package for analysis of space-time ecological series. R package version 1.3.21. 2018. https://CRAN.R-project.org/package=pastecs.
- A. Dragulescu, C. Arendt. Xlsx: Read, write, format excel 2007 and excel 97/2000/XP/2003 files. R package version 0.6.5 [computer software]. 2020. https://CRAN.R-project. org/package=xlsx.
- K. Müller, H. Wickham. Tibble: Simple data frames. R package version 3.1.0 [computer software]. 2021. https://CRAN.R-project.org/package=tibble.
- H. Wickham. ggplot2: Elegant graphics for data analysis. Springer-Verlag New York, 2016. https://ggplot2.tidyverse.org.
- E. Neuwirth. RColorBrewer: ColorBrewer palettes. R package version 1.1-2 [computer software]. 2014. https://CRAN.R-project.org/package=RColorBrewer.
- K. Ushey, J. Allaire, Y. Tang. Reticulate: Interface to ’python’. R package version 1.18 [computer software]. 2020. https://CRAN.R-project.org/package=reticulate.
- A. Letaw. Captioner: Numbers figures and creates simple captions. R package version 2.2.3.9000. 2015. https://github.com/adletaw/captioner.
- H. Wickham. Tidyr: Tidy messy data. R package version 1.1.3. 2021. https://CRAN.R-project.org/package=tidyr.
- H. Wickham, D. Seidel. Scales: Scale functions for visualization. R package version 1.1.1. 2020. https://CRAN.R-project.org/package=scales.
- H. Wickham, R. Francois, L. Henry, K. Muller. Dplyr: A grammar of data manipulation. R package version 1.0.5. 2021. https://CRAN.R-project.org/package=dplyr.
- M. Gagolewski. R package stringi: Character string processing facilities. 2020. http://www.gagolewski.com/software/stringi.
- A. Kassambara. Ggpubr: ggplot2 based publication ready plots. R package version 0.4.0. 2020. https://rpkgs.datanovia.com/ggpubr.
- S. Meschiari. Use LaTeX expressions in plots. R package version 0.5.0. 2021. https://CRAN.R-project.org/package=latex2exp.
- S. M. Bache, H. Wickham. magrittr: A Forward-Pipe Operator for R. R package version 2.0.1. 2020. https://CRAN.R-project.org/package=magrittr.
- K. Slowikowski. Ggrepel: Automatically position non-overlapping text labels with ’ggplot2’. R package version 0.9.1. 2021. https://CRAN.R-project.org/package=ggrepel.
- S. P. Millard. EnvStats: An R Package for Environmental Statistics. New York: Springer, 2013. https://www.springer.com.
- G. van Rossum, F. L. Drake. Python 3 reference manual. Scotts Valley, CA: CreateSpace, 2009.
- J. D. Hunter. Matplotlib: A 2D graphics environment//Computing in Science & Engineering. IEEE Computer SOC, 2007. Vol. 9. № 3. P. 90-95.
- C. R. Harris, K. J. Millman, S. J. Walt et al. Array programming with NumPy//Nature. Springer Science; Business Media LLC. 2020. Vol. 585. № 7825. P. 357-362. https://doi.org/10.1038/s41586-020-2649-2.
- F. Pedregosa, G. Varoquaux, A. Gramfort et al. Scikit-learn: Machine learning in Python//Journal of Machine Learning Research. 2011. Vol. 12. P. 2825-2830.
- L. Buitinck, G. Louppe, M. Blondel et al. API design for machine learning software: Experiences from the scikit-learn project. ECML PKDD workshop: Languages for data mining and machine learning. 2013. P. 108-122.
- The pandas development team Pandas-dev/pandas: pandas. Zenodo, 2020. https://doi.org/10.5281/zenodo.3509134.
- McKinney Wes. Data Structures for Statistical Computing in Python. Proceedings of the 9th Python in Science Conference/Ed. by Stéfan van der Walt, Jarrod Millman. 2010. P. 56-61.
- Pandoc - about pandoc. 2020. https://pandoc.org/index.html.
- Stack overflow. 2021. https://stackoverflow.com.
- Б. Б. Демешев. Случайные заметки. https://bdemeshev.github.io.
- R-bloggers.com. 2021. https://www.r-bloggers.com.
- Некоммерческая интернет-версия КонсультантПлюс. 2021. https://www.consultant.ru/cons/cgi/online.cgi?rnd=B999B9E3A856EF2B2050BFD8C669A27F&req=home.
- Д. Павлов, А. Водолагина, Д. Аксим. Iaaras/gostdown. GitLab. GitLab Community Edition. 2020. https://gitlab.iaaras.ru/iaaras/gostdown.
- В. С. Катькало. Эволюция теории стратегического управления. 2-e изд. СПб.: Издательство «Высшая школа менеджмента», Издательский дом Санкт-Петербургского университета, 2011. 546 с.
- Ю. В. Симачев, М. Г. Кузык, Н. Н. Зудин. Результаты налоговой и финансовой поддержки российских компаний: проверка на дополнительность//Журнал новой экономической ассоциации. Автономная некоммерческая организация «Журнал Новой экономической ассоциации». 2017. Т. 34. № 2. С. 59-93. https://elibrary.ru/item. asp?id=29416938.
- Г. Хамел, К. Прахалад. Конкурируя за будущее. Создание рынков завтрашнего дня/Пер. с англ. М.: ЗАО «Олимп-Бизнес», 2014. 288 с.
- С. Р. Халимова, А. Т. Юсупова. Влияние региональных условий на развитие высокотехнологичных компаний в России//Регион: экономика и социология. 2019. Т. 103. № 3. С. 116-142. http://sibran.ru/journals/issue.php?id=177218&article_id=177266.
- Н. И. Антипина. Трансформация российского бизнеса в условиях перехода к цифровой экономике: отраслевой и региональные аспекты//Экономическая наука современной России. 2018. Вып. 2. С. 102-114. https://www.ecr-journal.ru/jour/article/view/277.
- И. В. Данилин. Роль BAT в развитии китайских интернет-рынков и перспективные вызовы цифровой экономики КНР//Международные процессы. 2018. Т. 16. № 4. С. 96-116. http://intertrends.ru/system/Doc/ArticlePdf/2087/gq90pLNXnG.pdf.
- В. В. Перская, Э. П. Джагитян. Особенности посткризисных векторов прямых иностранных инвестиций в странах Азиатско-Тихоокеанского региона//Финансы: теория и практика/Finance: Theory and Practice. 2017. Т. 21. № 6. С. 80-93. http://financetp.fa.ru/jour/article/view/591.
- Е. М. Рогова, С. С. Галактионов. Влияние корпоративных венчурных фондов на результаты инновационной деятельности материнских компаний//Инновации. 2017. № 2. С. 22-28. https://maginnov.ru/ru/zhurnal/arhiv/2017/innovacii-n2-2017/vliyanie-korporativnyh-venchurnyh-fondov-na-rezultaty-innovacionnoj-deyatelnosti-materinskihkompanij.
- У. Ж. Шалболова. Экономическая оценка предпринимательских рисков при производстве строительных материалов с использованием инновационных технологий// Промышленное и гражданское строительство. Вып. 8. 2017. С. 43-48. http://pgs1923.ru/ru/index.php?m=4&y=2017&v=08&p=06.
- А. О. Баранов, Е. И. Музыко, В. Н. Павлов. Оценка эффективности венчурного финансирования методом реальных опционов//Финансы: теория и практика. 2017. Т. 21. № 4. С. 77-87. http://financetp.fa.ru/jour/article/view/7.
- Государственный информационный ресурс бухгалтерской (финансовой) отчетности. 2021. https://bo.nalog.ru.
- T. Батенева. Рейтинг на вырост. Ключевые роли в развитии экономики играют стимулирование конкуренции и создание доверительной среды//Российская газета. 120 (7878). 2020. https://rg.ru/2019/06/04/ekspert-vshe-chto-prepiatstvuet-vnedreniiu-innovacij-v-rossii.html.
- ОК 029-2014 (КДЕС ред. 2). Общероссийский классификатор видов экономической деятельности (утв. приказом Росстандарта от 31.01.2014 г. № 14-ст, ред. от 29.12.2020 г.). КонсультантПлюс. https://login.consultant.ru/link/?req=doc&base=LAW&n=381748&dst=1000000001&date=11.04.2021&demo=2.
- scikit-learn developers. 2.7. Novelty and outlier detection. 2021. https://scikit-learn.org/stable/modules/outlier_detection.html.
- P. J. Rousseeuw, K. V. Driessen. A fast algorithm for the minimum covariance determinant estimator//Technometrics. Taylor & Francis, 1999. Vol. 41. № 3. P. 212-223. https://www.tandfonline.com/doi/abs/10.1080/00401706.1999.10485670.
- scikit-learn developers. Outlier detection with local outlier factor (LOF). 2021. https://scikit-learn.org/stable/auto_examples/neighbors/plot_lof_outlier_detection.html#sphx-glr-auto-examples-neighbors-plot-lof-outlier-detection-py.
- G. W. Snecdecor, W. G. Cochran. Statistical methods. 8th ed. Wiley-Blackwell, 1991. 524 p.
- A. Kolomogoroff. Grundbegriffe der wahrscheinlichkeitsrechnung. Zentralblatt f r Mathematiker. Springer-Verlag Berlin Heidelberg, 1933. 62 p.
- N. V. Smirnov. Sui la distribution de w (Criterium de M.R.v. Mises)//Comptes Rendus. Vol. 202. Paris, 1936. P. 449-452.
- M. A. Stephens. EDF statistics for goodness of fit and some comparisons//Journal of the American Statistical Association [American Statistical Association, Taylor & Francis, Ltd.]. 1974. Vol. 69. № 347. P. 730-737. http://www.jstor.org/stable/2286009.
- G. S. Watson. On chi-square goodness-of-fit tests for continuous distributions//Journal of the Royal Statistical Society. Series B (Methodological). [Royal Statistical Society, Wiley]. 1958. Vol. 20. № 1. P. 44-72. http://www.jstor.org/stable/2983906.
- P. M. Shankar. Pedagogy of chi-square goodness of fit test for continuous distributions//Computer Applications in Engineering Education. 2019. Vol. 27. № 3. P. 679-689. https://onlinelibrary.wiley.com/doi/abs/10.1002/cae.22107.
- T. A. Arnold, J. W. Emerson. Nonparametric goodness-of-fit tests for discrete null distributions//The R Journal. 2011. Vol. 3. № 2. P. 34-39. http://journal.r-project.org/ archive/2011-2/RJournal_2011-2_Arnold+Emerson.pdf.
- J. Gross, U. Ligges. Nortest: Tests for Normality. R package version 1.0-4. 2015. https://CRAN.R-project.org/package=nortest.
- А. В. Бухвалов. Управленческая теория фирмы: Прогресс в синтезе теории финансов и стратегического менеджмента//Российский журнал менеджмента. 2016. Т. 14. № 4. С. 105-126. https://rjm.spbu.ru/article/view/125.
- T. Батенева. Топчемся на месте. Результаты инновационной деятельности в России ниже ожидаемых//Российская газета. 269 (8323). 2020. https://rg.ru/2020/11/30/ rezultaty-innovacionnoj-deiatelnosti-v-rossii-okazalis-nizhe-ozhidaniia.html.
Авторы