CCUS technologies: potential and limitations of the formation of the CO2 capture, storage and use sector in the Russian Federation

The aggravation of the climate agenda, the tasks of which have not yet been solved by mankind, is changing supranational and national legislation in the field of reducing emissions of climatically active gases, imposing obligations primarily on carbon-intensive sectors of the economy in order to implement energy transition and decarbonization of production and technological processes. As a key tool for ensuring carbon neutrality, policy makers and researchers call CCUS technologies (capture, transportation, storage and use of CO2), which have not yet received widespread commercial use primarily due to the high capital intensity and different levels of technological maturity of individual CCUS processes. However, many countries already have strategies for the development of CCUS technologies, not only design, but also use CO2 capture and storage to reduce emissions of CO2. The Russian Federation, having broad opportunities in the field of CCUS industry formation, has not yet developed a strategy for the development of the technologies in question, which at the same time would help to decarbonize carbon-intensive sectors and achieve climate neutrality of economic growth. Therefore, the purpose of the study is to systematize barriers and opportunities for the development of CCUS technologies for decarbonization of Russian carbon-intensive sectors, as well as an inter-country analysis of the institutional environment with the development of recommendations for the Russian Federation in the field of low of the formation of the CCUS industry. The object of special attention is the technological maturity of individual CCUS stages, their economic feasibility and the possibility of reducing the cost of CO2 capture and transportation. Thus, the study provides a guideline for future actions in the field of reducing CO2 emissions in order to preserve the long-term competitiveness of Russian carbon-intensive sectors in the context of a new energy transition and solving the problems of the climate agenda.

Keywords: climate agenda, CO2 emissions, CCUS technologies, decarbonization, technological maturity

References

  1. IPCC (2023) AR6 Synthesis Report. https://www.ipcc.ch/report/ar6/syr.
  2. R. Way, M. Ives, P. Mealy. Empirically grounded technology forecasts and the energy transition//Joule. Vol. 6 (9). 2022. P. 2057-2082. https://doi.org/10.1016/j.joule.2022.08.009.
  3. BP (2022) Statistical Review of World Energy. https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html.
  4. Energy Transitions Commission. Making the Hydrogen Economy Possible: Accelerating Clean Hydrogen in an Electrified Economy. 2021. https://www.energytransitions.org/publications/making-clean-hydrogen-possible.
  5. N. Pahomova, K. K. Rihter, M. Vetrova. Global'nye klimaticheskie vyzovy, strukturnye sdvigi v ekonomike i razrabotka biznesom proaktivnyh strategij dostizheniya uglerodnoj nejtral'nosti//Vestnik Sankt-Peterburgskogo universiteta. Ekonomika, 38(3), 2022, 331-364 . https://doi.org/10.21638/spbu05.2022.301.
  6. IEA (2021) About CCUS. https://www.iea.org/reports/about-ccus.
  7. European Climate Law, 2021. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32021R1119.
  8. Circular economy action plan, 2019. https://environment.ec.europa.eu/strategy/circular-economy-action-plan_en.
  9. UK Government. CCS deployment at dispersed industrial sites, 2020. https://www.gov.uk/government/publications/carbon-capture-usage-and-storage-ccus-deployment-at-dispersed-sites.
  10. IEA (2022) Section 45Q Credit for Carbon Oxide Sequestration. https://www.iea.org/policies/4986-section-45q-credit-for-carbon-oxide-sequestration.
  11. A. Ku, P. Cook, P. Hao et al. Cross-regional drivers for CCUS deployment//Clean Energy. Vol. 4 (3). 2020. P. 202-232. https://doi.org/10.1093/ce/zkaa008.
  12. Global CCS Institute. 2022. Status Report. https://status22.globalccsinstitute.com/2022-status-report/appendices.
  13. Prikaz № 273 ot 03.02.2022 «Ob organizacii deyatel'nosti tekhnicheskogo komiteta po standartizacii “Ulavlivanie, transportirovanie i hranenie uglekislogo gaza” (TK 239)». Rosstandart, 2022. https://www.gost.ru/portal/gost/home/activity/documents/orders#/order/302294.
  14. Uchenye sostavili kartu perspektivnyh mest v Rossii dlya zahoroneniya uglekislogo gaza. Ekologiya proizvodstva, 2022. https://news.ecoindustry.ru/2022/04/uchenye-sostavili-kartu-perspektivnyh-mest-v-rossii-dlya-zahoroneniya-uglekislogo-gaza.
  15. «Gazprom neft'» raskryla detali rossijskogo proekta ulavlivaniya СО2. Vedomosti, 2021. https://www.vedomosti.ru/business/articles/2021/12/17/901240-gazprom-neft-raskrila.
  16. «Rosneft» planiruet tri pilotnyh proekta po hraneniyu i ispol'zovaniyu СО2. Interfaks, 2022. https://www.interfax.ru/business/823667.
  17. IEA (2020) Regional opportunities CCUS. https://www.iea.org/reports/ccus-in-clean-energy-transitions/ccus-technology-innovation.
  18. CCUS – ekonomika i perspektivy v Rossii. Infotek, 2023. https://itek.ru/analytics/ccus-ekonomika-i-perspektivy-v-rossii.
  19. Energy Transition Institute (2021). Carbon Capture Utilization and Storage. https://www.kearney.com/documents/17779499/17781864/CCUS-2021%2BFactBook.pdf/718e94af-1536-b23e-1ac9-a4de74ffef25?t=1623398953000.
  20. M. Bui, C. Adjiman, A. Bardow, P. Webley. Carbon capture and storage (CCS): the way forward//Energy & Environmental Science. Vol. 11. 2018. P. 1062-1176. https://doi.org/10.1039/C7EE02342A
  21. M. Moch, W. Xue, J. Holdren. Carbon Capture, Utilization, and Storage: Technologies and Costs in the U.S. Context. Policy Brief, 2022. https://www.belfercenter.org/publication/carbon-capture-utilization-and-storage-technologies-and-costs-us-context.
  22. National Petroleum Council Report (2019). A Roadmap to At-Scale Deployment of Carbon Capture, Use, and Storage. https://dualchallenge.npc.org.
  23. IEA (2022) CCUS in Clean Energy Transitions. https://www.iea.org/reports/ccus-in-clean-energy-transitions.
  24. J. Alcalde, S. Flude, M. Wilkinson. Estimating geological CO2 storage security to deliver on climate mitigation//Nature Communications. Vol. 9. 2018. https://doi.org/10.1038/s41467- 018-04423-1.
  25. IEA (2022). CCUS technology innovation. https://www.iea.org/reports/ccus-in-clean-energy-transitions/ccus-technology-innovation#reference-7.
  26. K. Jiang, P. Ashworth. The development of Carbon Capture Utilization and Storage (CCUS) research in China: A bibliometric perspective//Renewable and Sustainable Energy Reviews. Vol. 138. 2021. https://doi.org/10.1016/j.rser.2020.110521.
  27. F. Bruns, T. Babadagli. Heavy-oil recovery improvement by additives to steam injection: Identifying underlying mechanisms and chemical selection through visual experiments//Journal of Petroleum Science and Engineering. Vol. 188. 2020. https://doi.org/10.1016/j.petrol.2019.106897.
  28. Rosgidromet. Tretij ocenochnyj doklad ob izmeneniyah klimata i ih posledstviyah na territorii Rossijskoj Federacii. Obshchee rezyume. SPb.: Naukoemkie tekhnologii, 2022. 124 p. http://downloads.igce.ru/reports/Doklad_o_klimate_RF_2022_s_podpisiyu_compressed_with_cover.pdf.
  29. Rasporyazhenie Pravitel'stva RF ot 11 marta 2023 g. № 559-r. «Nacional'nyj plan meropriyatij vtorogo etapa adaptacii k izmeneniyam klimata na period do 2025 g.». http://static.government.ru/media/files/DzVPGlI7JgT7QYRoogphpW69KKQREGTB.pdf.
  30. Monitoring ekologicheskih strategij krupnejshih rossijskih nefinansovyh kompanij 2021 g. – pervoe polugodie 2022 g. Bank Rossii, 2023. http://www.cbr.ru/Content/Document/File/144502/analytic_note_20230202_dfs.pdf.
  31. J. Li. Comparative life cycle energy consumption, carbon emissions and economic costs of hydrogen production from coke oven gas and coal gasification//International Journal of Hydrogen Energy, 45 (51), 2020. P. 27979-27993.
  32. A. Cherepovitsyn, S. Fedoseev, P. Tcvetkov et al. Potential of Russian Regions to Implement CO2-Enhanced Oil Recovery//Energies. Vol. 11 (6): 1528. 2018. https://doi.org/10.3390/en11061528.
  33. A. Cherepovitsyna, E. Kuznetsova, T. Guseva. The costs of CC(U)S adaptation: The case of Russian power industry//Energy Reports. Vol. 9 (1). 2023. P. 704-710. https://doi.org/10.1016/j.egyr.2022.11.104.
  34. IEA (2022). Opportunities for Hydrogen Production with CCUS. https://www.iea.org/reports/opportunities-for-hydrogen-production-with-ccus-in-china.

Authors